

Mean Sea Level tidal plane errors

CRC-SI Project 1.14:

"Reconciling Australia Height datum's: the Vertical component"

Nicholas Dando

Geoscience Australia

National Geospatial Reference Systems Project Email: Nicholas.Dando@ga.gov.au PO Box 378, Canberra, ACT 2601, Australia

Bill Mitchell

National Tidal Centre (NTC)

Bureau of Meteorology (BOM) Email: B.Mitchell@bom.gov.au South Australian Office 25 College Rd. Kent town PO Box 421. SA 5071

Co-operative
Research Centre
for Spatial Information

XXIV FIG International Congress 2010, Sydney

The problem:

Bathymetry and Topography datums don't match:

- Bathymetry datum is CD/LAT
 - Bathymetry measured from MSL observations & adjusted down to LAT/CD
 - Varying length MSL obs. from days to decades in length
 - Varying length MSL obs. give inconsistent datums between bathymetry datasets
- Topography datum is AHD
 - AHD referenced to 1966 1968 MSL

Solution:

• Define a common datum with uncertainties for varying span obs.

Overview:

Method for comparing various obs. spans of MSL:

- 1. Select long term tide gauges for residual baseline (defining MSL datum).
 - At these gauges uncertainty = 0.000m
- Get periodogram amplitude estimates (spectrum) of residual via Fourier Transform
- 3. Interpolate spectrum components to get synthetic spectrum at short span MSL obs. point.
- 4. Synthetic spectrum modified for short obs. span uncertainty, relative to long term baseline.

Later project/further work:

 Perform method on all varying span MSL obs. with ellipsoidal heights, collate for MSL uncertainty surface.

I S M AND ROOM INTERPOLATING SPECTRUM SURVEYING & MAPPING SURVEYING & MAPPING TO SURVEYING & MAPPI

- Interpolated baseline spectrum components to create synthetic spectrum at interpolation point.
- Assumption: Low freq. spectrum has high spatial correlation. (wide bands not individual frequencies)
- Interpolation performed for each redistributed spectrum bin *R[f]*
- Inverse distance weighting used (Shepard, 1968)
 - Fits data points *R[f]*, only 66 points
 - · Copes with irregular data points.
 - Very simple, smoother than linear interpolation

Shepard's inverse distance weighting:

$$S[x] = \sum \frac{w_k(x)}{\sum w_k(x)} \cdot R[f]$$

$$w_k(x) = \frac{1}{d(x, x_k)^p}$$

x interpolation point $w_k(x)$ weighting function

S[x] synthetic spectrum value

R[f] spectrum component

 $d(x, x_k)$ distance

p proponent = 2

Summary

- Baseline long term tide gauges used as MSL datum
- Synthetic spectrums are calculated around the coast.
- Synthetic spectrums are modified to produce uncertainty at short span MSL obs. points
- With ellipsoidal heights MSL observations around coastline can be greatly expanded.
- Method adaptable for AHD and older sea levels comparison.

