

Overview

- Motivation
- Monitoring and Modeling the Earth System
- Structure of GGOS
- Thematic (Geodetic) Observing Systems / Integrated GGOS Products
- Conclusions

ETH Edgesterliche Includezh Hochschafe Zirkh

New GGOS Components in Place

Established New Components (January 2009):

- Bureau for Networks and Communication: Cambridge Center for Astrophysics / NASA (Chair: M. Pearlman)
- Bureau for Standards and Conventions: Research Group on Satellite Geodesy in Munich (FGS: FESG, DGFI, IAPG; Chair: U. Hugentobler)
- Bureau for Satellite Missions → GGOS WG on Satellite and Space Missions: Ohio State University (OSU; Chair C.K. Shum)

GGOS Portal (January 2009):

 GGOS Portal: BKG (Federal Agency of Cartography and Geodesy, Frankfurt)

GGOS Coordination Office (January 2010):

ASI (Italien Space Agency) in charge of the Coordination Office

ETH Edge-simhulae Technikaha Hackahala Zirich Belas Federal Brattuda of Brathalings Zurich

GGOS Intergovernmental Committee (GIC)

Problem: long-term support and sustainability of the IAG Services and the global GGOS infrastructure

GGOS Intergovernmental Committee (GIC) to support GGOS in attaining its goals by:

- Forum for the coordination of resources provided by the member organisations for sustainable GGOS activities
- Promotion of GGOS to international entities that require intergovernmental representation (UN, etc.)
- Options to link GGOS to higher intergovernmental bodies (e.g., UN Cartographic Conference, UNOOSA, OECD Global Science Forum, etc.)

First step: white paper and an inter-agency agreement prepared by the GIC Planning Group

ETH Edge similarle Technische Hackerhale Zürkh Seins Federal Bestrute at Technisings Zurich

Thematic (Geodetic) Observing Systems / Integrated GGOS Products

Ideas by Reiner Rummel (Gravity Workshop in Graz):

Part 1: Thematic (Geodetic) Observing Systems (and Models) in order to be able to:

- cope with the complexity of the Earth system
- work on an integrated but limited / manageable part of the Earth system
- generate suitable integrated GGOS products

Part 2: Connect and link the themes to GGOS:

- as partial systems of global Earth system studies
- for consistency and quality checks between the thematic (geodetic) observing systems

E I PH Edgesdimhalte Technikaha Hacksahale Zirki belas Federal Brattsale of Bratssalingy Zurah

Three Themes / Integrated Products Selected (1)

Selected at GGOS Retreat in Miami, Feb. 2010:

- Theme 1: Global Unified Height System (M. Sideris et al.)
 - IAG Inter-Commission Project 1.2: Vertical Reference Frames
 - Complementing the geometric reference frame ITRF
 - Unification of existing vertical datums
 - GOCE mission as a major contributor and driver
 - Enable global GNSS leveling at the 1 cm level
- Theme 2: Geohazards (global Earth surface deformations and strain rates for geohazards assessment and disaster prevention) (T. Dixon et al.)
 - SAR / INSAR data sharing, product benchmarking, standards, combined products through coordination among agencies
 - Improve effectiveness of geodetic community in geohazards
 - Work toward an international InSAR service

E | Fil Silgerslimhulue Sechsische Hochschule Zürk wiss federal Bestitute of Besteutings Zuruk

Three Themes / Integrated Products Selected (2)

- Theme 3: Sea-Level Change, Variability and Forecasting (H.-P. Plag et al.)
 - Frequent assessment of the global sea level curve and its error budget: GGOS Sea Level Panel
 - Understanding mass balance in the global water cycle
 - Sea level rise hazard maps for local sea level
- Global GGOS network of core sites (crucial for all themes):
 - Co-location of space geodetic techniques (SLR/LLR, VLBI, GNSS, DORIS) with latest technologies and permanent local tie monitoring
 - Many auxiliary instruments (clocks, gravimeters, seismometers, meteo sensors, water vapor radiometers, ...)
 - → Call for Participation in the Global Geodetic Core Network in preparation

ETH idge sümlaçke Technikaha Hocksahale Zirki wisa federal testhale of Technicopy Zirkih

Conclusions

- A better monitoring of the Earth system is required to understand the Earth as a system
- GGOS is the geodetic contribution to GEO and to GEOSS
- GGOS, through the IAG Services, already now provides very important geodetic/geophysical products to society and science
- Major structural components of GGOS in place
- GGOS is now working on
 - integrated geodetic products based on observation themes
 - implementation plan for GGOS in 2020, especially for the Global Geodetic Core Network (GGCN)
 - sustainability of support: GGOS Intergovernmental Committee

ETH Agradical who lockshades Hocksades Zicksh who for docal Boothsdo of Boothsdoogs Zicksh

Mission of GGOS

The mission of GGOS is to advance geodetic observing methods for Earth and planetary system science and applications by:

- defining the geodetic infrastructure needed by science and society;
- advocating for the establishment and maintenance of this geodetic infrastructure;
- improving the quality and accessibility of geodetic observations and products;
- coordinating interaction between the IAG Services, Commissions, and stakeholders; and
- educating the scientific community about the benefits of geodetic research and the public about the fundamental role that geodesy plays in society.

ETH Edge-simhulu Technische Hochschale Zürk Deits Federal Bestrute af Besteulings Zurah

