





#### Contents

- Interoperability
- Environmental data in urban environment
- Technology: generic and webGIS applications
- City of Zagreb Case Study
- Conclusions and future challenges





□ data formats

□ processing methods













### Project goals

- inventory list of various datasets collected at local level and delivered to national level
- unification of spatio-temporal information into a unique webGIS
- usage of the system for more objective decision making based on multi-criteria analysis (MCA), simulation preparation, emergency evacuation plans











## Elements of webGIS application

- data warehouse: PostgreSQL/PostGIS
- application for mosaic making: Mapnik (used by the OpenStreetMap project)
- cache server: TileCache
- user interface: ExtJS/GeoExt/MapFish, OpenLayers
- data upload speed: at the level of GoogleMaps application (!)













### Conclusions

- Case study confirmed the hypothesis that an Open Source solution is as efficient as any proprietary/commercial application.
- Usage of indexed mosaics is essential for effective visualisation of spatial data about the environment coming from different sources.
- Open Source components are highely independent and can be combined at will, according to user needs.







# Future challenges

- implementations of WPS (Web Processing Services)
  - □ statistical analysis of environmental data acquired at daily rate as a function of webGIS
- preparation of simulations as a base for emergency situation management
- integration with existing webGIS applications of the City of Zagreb (local government)

