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Principle of GPS CORS Network RTK
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* enabling long-range RTK by _
receiving ionospheric G;ige"”el
corrections (+ data reference
station) from CORS network
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e jonospheric corrections are
predicted from the ionospheric
delays from CORS network and
disseminated to the user

CORSn
e precise ionospheric estimation
relies on integer network
ambiguity resolution
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CORS Network Ambiguity Resolution

* is key to precise CORS Network RTK and should be as
fast as possible, preferably instantaneous (single
epoch) as to generate corrections truly in real time

e at present (dual-frequency GPS): we have to deal with
float ambiguity convergence times:
— at beginning of operation of CORS network
— when a new satellite rises
— after a long (power) failure
before the integer ambiguities can be reliably fixed,
since the differential ionospheric delays are unknown
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with (3, the =, =r, DD ambiguity variance-covariance matrix:

Properties of ADOP:

ADOP as diagnostic for network AR

ADOGP—- 0, ‘ 1273 Ambiguity Dilution Of Precision (Teunissen, 1997)

h

scalar measure, expressed in cycles , 2
ambiguity correlation is taken into accol
invariant for change of reference satellite
invariant for LAMBDA decorrelating transformation
analytical closed-form expressions possible

related to ambiguity success rate: 4OF <0 14= F .. > (9%
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CORS Network AR model assumptions

|AII n CORS stations observe the same m satellites during k observation epochs |

Observations: Parameters:

FIG Congress 2010

= Carrier-phase data of j =_Satellite-coordinates {GS):3mk

frequencies: jnmk obs., with a  =_CQORS stations-coordinates:3n
precision of =, —¢. 'y, = DD ambiguities: j(n-1)(m-1)
Code (pseudorange) data of j
frequencies: jnmk obs., with a

precision ofs . —¢ ¢ \fu,

= Receiver clock errors: 2j(n-1)k
Satellite clock errors: 2jmk

lonospheric observations: nmk Tropospheric zenith delays: n-1

obs. (zero or external, e.g. GIM),
with a precision of 5. —c i,/ (n-1)(m-1)k
and + a function or distance all observations are assumed

= lonospheric slant delays:

to be uncorrelated in time
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CORS Network RTK ADOP expression
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CORS Network RTK Full AR ADOP is function of:

* # satellites (m), stations (n), frequencies (j), epochs (k)

o ... ;undifferenced phase, code and ionosphere stdev. [m]
e A= ]_[lf‘ : geometric mean of j wavelengths [m]

e w.s~l...#: satellite-dependent observation weights

-> for short time spans (up to few min.), receiver-satellite geometry may be
assumed constant (and also the satellite-dependent observation weights)
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CORS Network RTK ADOP examples

Derived ADOP formula provides an easy tool to
demonstrate the short-time behaviour of the
Network ADOP as function of a varying:

— number of GPS satellites
— number of CORS stations
— number of GPS frequencies

— ionospheric precision

— ionospheric parameterization
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Network ADOP for varying # frequencieg

e CORS network of n = 5 stations
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— Modernized triple-frequency GPS will enable
instantaneous network AR!
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Network ADOP for varying iono stdev
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dependent function

numter of epochs (k)

= ADOP<014= P, =099

— If we had very precise (~1 cm) external ionospheric
information, instantaneous network AR would be feasible
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lonospheric reparameterization?

atellite s

* Inthe previous examples, nm
ionospheric slant delays were
parameterized in the ionosphere-
weighted network model (most
flexible ionospheric modelling)

* What if we do not parameterize GNsgatellite s
slant delays, but 2m ionospheric
gradients, after mapping the
slant delays to vertical delays?
(this corresponds to the so-called
ionospheric “FKP” approach)

— less parameters (for n > 2) and thus a

strengthening of the network AR model (Cman;?e:)

CORS n
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Network ADOP under ionospheric
repara meterization
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Conclusions

* Dual-frequency GPS Network AR between CORS stations
is suffering from convergence times, despite a fixing of
the CORS station positions.

* Bottlenecks for instantaneous CORS Network AR are:
— Insufficient number of satellites and frequencies
— The presence of the ionospheric delays

* CORS Network AR may be speed up to instantaneous AR:

— By a reparameterization of the slant ionospheric delays into
less parameters (ionospheric horizontal gradients; “FKP”)

— In the future by using modernized triple-frequency GPS signals
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Questions?

Contacts:
d.odijk@curtin.edu.au, p.teunissen@curtin.edu.au

GNSS Research Centre
Department of Spatial Sciences

Curtin University of Technology
GPO Box U1987
Perth WA 6845
AUSTRALIA
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