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SUMMARY  
 
This paper investigates different networks of survey monuments to determine whether 
surfaces fitted using trend analysis and Kriging can replicate a complex predicted 
deformation surface, and therefore monitor the progress of the subsidence over time. The 
network configuration was complicated by the sparse availability of land in the subsidence 
zone, on which to place survey monuments. The study shows that the best network 
configuration can be determined but that, using this method there is little point in undertaking 
an annual campaign of measurement. 
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1.  INTRODUCTION 
 
A feasibility study into the methods of monitoring permafrost deformation due to gas 
extraction in the Mackenzie Delta of Canada has previously been reported (Tait and 
Moorman, 2003). In that paper, the initial findings of an investigation into the use of Kriging 
to represent a complex subsidence bowl were introduced. The main drawback of that study 
was identified as the lack of reliable variance estimates, for both the chosen observation 
method and the stability of survey monuments in permafrost. Studies into both have now 
been completed, which allows a more complete report into the surface fitting method. 
 
Applying models to deformation parameters has long been undertaken in order to discover 
the underlying physical mechanism of the movements. In common with other reported work 
(Kenselaar and Quadvlieg, 2001) the best-fit polynomial surface derived in this study is a 
purely geometric entity that aims to approximate the surface generated by a geomechanical 
model. Unlike that study, the volume that is available for measurement in this case allows 
only a sparse network of observations, and not in the principal areas of the geometric shape. 
The predicted shape itself is more complex due to a lower ratio of depth to radius for the gas 
reservoir, plus faulting across the study area. Kenselaar and Quadvlieg noted that perhaps the 
most important aspect in the application of surfaces was the ability to use relative height 
parameters, precluding the need for a specific monument to remain stable over the length of 
the monitoring period. In the case of this study, carrier-phase DGPS was proposed as the 
observation method, a technique that generally gives better relative accuracy than absolute. 
DGPS was chosen mainly due to the large water-bodies in the study area (up to 2km), across 
which optical levelling could become rather inaccurate. 
 
Figure 1 shows the anticipated subsidence bowl configuration and total movement contours 
for the ‘most likely’ scenario developed by geophysical packages (Tait and Moorman, 2003). 
The skewed shape derives from faulting in the North-East to South-West direction. The 
maximum annual subsidence is anticipated to be around 25mm. The axes and centre of the 
resulting ‘ellipse’ fall under the waters of the Middle Channel of the Mackenzie River. The 
area is made up of deltaic sand and gravel with very low relief, with continuous permafrost 
and massive ice intrusions in the soil to a depth of up to 600m. The permafrost active layer 
depth is unknown, but is regionally between 0.5 and 2.0m in depth. 
 
Clearly, there is little of the subsidence area that can be measured on land, yet the complex 
siltation of the channels in the area makes hydrographic measurement meaningless. Methods 
of areal monitoring using remote sensing are, with the exception of Differential 
Interferometric SAR (DInSAR), not sufficiently precise to monitor the small subsidence on 
an annual or biennial basis. DInSAR in this region brings its own unknown factors, but is 
currently under investigation as part of the larger project goal. Other studies in the project, 
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such as carrier-phase differential GPS levelling at 70° North, and the stability of survey 
monumentation in permafrost have been completed (Tait et al, 2004a, Tait et al, 2004b). 
These studies have allowed the extension of this study to include the use of Kriging to 
analyse the subsidence surface and monitor its progress. This paper discusses the fitting of a 
zero-measurement error surface to the predicted surface shown in Figure 1, followed by the 
effect on this prediction surface when the variances of the observation method and survey 
monument stability are added to the estimation. 
 
2.  FITTING THE ZERO-ERROR SURFACE 
 

 
 
Figure 1: Detail of the Niglintgak Island area showing the predicted subsidence bowl (contours in 
metres), the spread of monuments in Model A (circles) and the artificial monuments (triangles), and 
the major axes of the subsidence bowl 

 
This section describes the analysis of four proposed survey networks for the monitoring of 
subsidence due to the extraction of gas at Niglintgak. The Base Surface against which the 
four models have been compared was derived from the subsidence model shown by contours 
in Figure 1. In order to ensure that the same regression model was applied to each survey 
monument configuration, Trend Surface Analysis was undertaken and all Kriging estimates 
were derived from the deviations (local autocorrelated component) of the selected model. 
Residuals for each modelled surface have been determined using the same Trend surface to 
ensure consistency.  
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2.1  Survey Monument Network Design 
 
A total of four models were analyzed for this project. The first model consisted of 27 
monuments randomly distributed throughout the study area (Figure 1). The three remaining 
models were based on the same general configuration, but with different numbers of 
monuments used in each case. In order to be able to model a phenomenon it is extremely 
important that significant features within the location are captured by the model. With respect 
to the predicted subsidence, the significant features are low points in each of the depressions 
and the main axes that define the general shape of the subsidence. These features have been 
highlighted in Figure 1. Monuments were then placed to coincide as closely as possible with 
these features. Monuments for Model B were placed close together within the steeper 
portions of the study area, at approximately 500m intervals radiating out from the centre of 
each depression (Figure 2).  

 
Figure 2: Model B 

 
A total of 100 monuments were used for Model B. Model C was created by removing nearly 
every second monument from Model B, resulting in a total of 56 monuments being used. A 
further 13 monuments were removed for Model D. The primary difficulty in the placement of 
monumentation is that the centre of the larger depression falls within the estuary that runs 
through the study area. This results in additional control being placed along the edge of the 
estuary in an attempt to improve the shape of the predicted surface. The heights assigned to 
each monument used in the Kriging process have been obtained from the estimated Base 
Surface. In all predicted models, a buffer of artificial monuments was included to limit the 
shape of the surface being modelled. 
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2.2  Trend Surface Analysis 
 
An initial review of the contour data indicated that the data was negatively skewed (Skewness 
= -0.66) as shown in Figure 3a, with a mean of -0.18m and a standard deviation of 0.16m, 
indicating that it would be necessary to transform the data prior to analysis. The exploratory 
analysis undertaken also indicated that there was a second order trend in the data and that it 
was anisotropic. While it is possible to utilize Universal Kriging within ArcGIS to account 
for regional trend within the dataset, ArcGIS does not allow control over the type of trend 
surface that is used, aside from a first, second or third order surface, nor does ArcGIS allow 
you to apply a specific trend surface to a number of different data sets. The outcome of this is 
that it is not appropriate to compare two surfaces in ArcGIS when there is a trend, as different 
sample sets will generate different surfaces for the same data. The trend was therefore 
modelled in S-Plus, initially using a third-degree polynomial followed by a stepwise analysis 
of the terms. The significance of each model was tested at α = 0.05 using the F Statistic. If a 
model was significant, each individual element of the model was tested for significance using 
the student-t test.  
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Figure 3: Histogram of residuals before (a) and after (b) Transformation 
 
The most appropriate trend model (F: 207.5, k = 6, n-k-1= 387, p < 0.0000) was found to be: 
 

( ) xyyxxyyxDepression 2232 342.2562.2328.2287.2859.3730.3723.10 −−−−++−=−  

 
The t-statistic for β1 to β5 were 26.79, 21.76, -13.27, -20.32, -8.54, -8.21 (α = 0.05, n-k-2= 
386), with p < 0.0000 in all cases.  
 
The Residuals v. Fitted plot continued to indicate that some structure existed, however this 
can be partly attributed to the type of data used. Trend surface analysis is based on the 
assumption that observations are randomly distributed, however in this instance observations 
are constrained by the location of the contours provided. The Scale-Location plot was less 
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affected by skewed data and as a result showed considerably less structure than the Residuals 
v. Fitted plot. The Normal Quantile-Quantile (QQ) plot showed minor deviation from the 
normality assumption for lower values and is accounted for by the slight negative skew 
(Skewness: -0.0917) of the transformed observations. Given that the spread of the fitted 
model for the Residual-Fit Spread plots was greater than the spread of the residuals we can 
conclude that the model has regression coefficients that are influential to the model. This is 
also reflected by R2, which was 0.7629 for this model. Given that the Normal QQ plot forms 
a reasonable line; that the residual plots are adequate and the R2 value has increased by some 
18%, the transformation has been considered worthwhile. 
 
2.3  Semivariogram Model Selection 
 
Semivariance is a measure of the degree of spatial dependence between observations, and the 
selection of an appropriate semivariogram is of primary importance in Kriging. The 
Semivariogram parameters that are of concern are the Nugget, the Range, the Sill, the Lag 
Distance and Number of Lags (Davis, 2002, Krajewski et al, 2001). Because spatial 
dependence is a function of “nearness” between objects, a Semivariogram was calculated for 
each model, since the sampling distance between monuments is irregular in this case, average 
nearest-neighbour distances were used for lags (Krajewski et al, 2001). The number of lags 
per monument was set as less than one-half the largest distance in the data set (Johnston et al, 
2001), as such the number varied between 7 and 14 according to the different monument 
network designs. As a result of the global trend being removed the residuals are reasonably 
isotropic. The Nugget varied from model to model, as did the partial Sill. Analysis 
determined that the Rational Quadratic Semivariogram provided the best results in terms of 
the Standardized RMS being closest to 1. If the Standardized RMS equals one this implies 
that the model is neither overestimating nor underestimating the error. The model resulted in 
the following statistics for each of the models (Table 1). 
 

Table 1: Predicted Model Errors using a Rational Quadratic Semivariogram 
 

Prediction Errors Base Model A Model B Model C Model D 
Mean -0.004 -0.004 -0.010 -0.007 -0.008 
Root Mean Square 0.042 0.105 0.066 0.084 0.080 
Average Standard Error 0.039 0.127 0.066 0.099 0.111 
Mean Standardized -0.025 -0.023 -0.055 -0.033 -0.038 
RMS Standardized 0.616 0.762 0.613 0.672 0.638 
Maximum Standard Error 0.010 0.031 0.016 0.019 0.021 

 
The maximum depth for the Base Model was revised to -0.612m. A plot of the estimated 
error between the Base Surface and the surfaces generated in the four test networks was 
generated (See Figure 4 for an example plot). Visually, Model B (not shown) best reflected 
the overall shape of the anticipated subsidence, as expected from the results of Table 1. 
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Figure 4: Estimated variance (metres) between Base Surface (contours shown) and Model C 

 
2.4  Comparison of the Different Surfaces 
 
Differences between the modelled surfaces and the Base surface were judged using a 95% 
Confidence Interval derived from the Kriging error predictions as a means of selecting the 
most appropriate model. Because error variances are estimated for each model we can 
calculate a prediction interval for each surface, where the interval: 
 

( ) ( ) ( ) ( )( )ssZssZA kk σσ 96.1ˆ,96.1ˆ +−≡  

 
is a nominal 95% prediction interval for ( )sZ  being the estimated surface, which, under the 

assumption that ( )•Z  is stationary and has a normal distribution, satisfies 

( ){ } %95Pr =∈ AsZ . 
 
This analysis has focused on the ability of each survey control network to represent the 
anticipated subsidence due to the extraction of natural gas. The expectation was that as 
survey monumentation was removed from the model the ability to predict the anticipated 
subsidence would decrease, but it was unknown whether the models were statistically 
different. Therefore, analysis of variance (ANOVA) methods were used to determine whether 
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or not there was significant difference in the mean differences of the surfaces. At least one of 
the means was different ( 2.6050205012,3,05.0 =F , p < 0.0000); therefore Fisher’s Least 

Significant Difference 000184.0=LSD  was used to determine which means were different. 
Given the model means: 
  

( ) ( ) ( ) ( )D00349.0,C00122.0,B00055.0,A00628.0 4321 −=−=== •••• yyyy   

 
all paired differences were significant, with model B giving the best result (closest to zero) 
followed by Models C, D and A. 
 

Table 2: Difference between Models and Base Model at 95% CI (25m cells) 
 

Model Cells Outside 
95% CI 

Cells Inside 95% 
CI 

Total Cells Percent 
Outside CI 

Maximum 
Difference 

A 66,121 138,896 205,017 32.2% 0.190 
B 76,781 128,236 205,017 37.4% 0.088 
C 76,130 128,887 205,017 37.1% 0.082 
D 85,863 119,154 205,017 41.9% 0.068 

 
Table 2 summarizes the differences between each of the models and the base model in terms 
of area and maximum difference using the 95% CI equation. All models indicate varying 
degrees of underestimation of subsidence around the low point of the southeast depression. In 
this area Model A exhibits the greatest deviation at 19cm, while Model D has the least 
deviation at 6.8cm. Model A also indicated some overestimation of the northwest portion of 
the northwest depression by 2 to 3cm and under-estimation by approximately 4cm to the 
northeast of the northern depression. Models B, C and D showed similar differences around 
the northwest depression; however they are all within 1 or 2cm of the base surface. Model D 
has the lowest maximum difference when compared to the Base Surface; however, it is 
assumed that this is partially due to Model D having a larger Average Standard Error (45 mm 
larger than Model B, and 22mm larger than Model C and therefore a larger Confidence 
Interval envelope. As mentioned earlier these effects, or differences between surfaces, are due 
to the inability to place monumentation in appropriate locations due to the estuary that passes 
through the study area. 
 
Based on this analysis each of the models tested gave significantly different results, and all 
were significantly different from the Base Surface that the project was attempting to recreate. 
The best average representation was Model B, followed by Model C. Given that the total area 
that falls outside the 95% confidence envelope was similar for Models B and C, and that the 
maximum deviation from this envelope is less for Model C, it was decided that Model C was 
the more appropriate model, given that there are only 56 monuments required, as opposed to 
100 monuments for Model B. Figure 5 shows the predicted differences for Model C using a 
95% confidence envelope. 
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Figure 5: Base - Model C (Rational Quadratic) at 95% CI 

 
3.  INCORPORATING VARIANCES IN THE CHOSEN SURFACE 
 
The previous section examined whether a zero-error surface could reproduce the predicted 
geomechanical surface at different epochs. This section introduces variances for the chosen 
observation method of DGPS, and the stability of survey monuments in permafrost. As 
outlined by Cressie et al (2003), micro-scale variation (the so called ‘Nugget effect’) causes a 
discontinuity at the origin which mathematically should not exist. Therefore, if continuity of 
a phenomenon is expected at the microscale, then the nugget should represent measurement 
error. But because we are limited by the data used in the calculation of the variogram we are 
unable to determine if microscale variation is continuous or not. Typically, it is assumed that 
microscale variation is not continuous, and that the Nugget represents both a microscale 
process and a measurement error. Therefore, measurement errors are transferred to errors in 
the specification of the spatial dependence structure used by the Kriging process. If we know 
what the measurement error is then, following Cressie et al (2003), it is possible to remove 
the effect of measurement error from Kriging prediction errors, thereby improving the quality 
of the prediction. 
 
Based on fieldwork undertaken during the summer of 2004 (see Tait et al, 2004a) the 
standard deviation for differential heights determined by DGPS in the region was found to be 
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0.008m. The stability of permafrost monumentation was also investigated (Tait et al, 2004b) 
with the most stable configuration giving around 5mm standard deviation over 17 years. 
Model C was revisited so that measurement error could be incorporated into the estimation of 
the surface. It is important to note that it was necessary to use a Gaussian Semivariogram 
model in this instance as the Nugget calculated from the Rational Quadratic Semivariogram 
was less than the measurement error variance (0.000032 versus 0.000064). This resulted in an 
increase in Nugget effect to 0.006629, with a Partial Sill of 0.044194 and a Range of 8151. 
Lag distance and number of lags were maintained at 920m and 9. This result would indicate 
that the Rational Quadratic Semivariogram will tend to underestimate the micro-scale 
variation in this instance. In addition, changing the model of spatial dependence makes it 
difficult to compare the results from this section with the results described earlier, as the 
Gaussian model tends to be used to represent samples that have strong regional continuity, 
whereas the Rational Quadratic model tends to be used to represent samples that have a strong 
short-range continuity, i.e. spatial dependence reduces more rapidly as the Lag distance increases. 
The table below highlights the differences between the predicted error surfaces with and without 
measurement error. 
 

Table 3: Prediction Errors for Model C with and without Measurement Error Specified 
 

 Without ME 
Specified 

With ME 
Specified 

Minimum 0.007 0.006 
Mean 0.008 0.007 

Maximum 0.010 0.008 
Standard Deviation 0.0004 0.0004 

 
These results indicate a small improvement in the prediction error by accounting for 
approximately 1% of the Nugget effect, however it is not significant (Z = 0.25, p = 0.41). In 
effect, for this analysis, the scarcity of monuments overpowers the expected measurement 
error. This knowledge provides the opportunity to estimate a level of measurement error that 
will maintain accuracy of prediction and at the same time minimize effort required in the 
field in order to obtain the data. If measurement error is increased, i.e., we relax the 
measurement specifications, we do not start predicting a significant difference until the 
standard deviation of measurement error is in the order of 0.03m. 
 
As is evident from comparison of Figures 5 and 6, use of the Gaussian Semivariogram results 
in a much smoother surface than does the Rational Quadratic Semivariogram. In addition the 
Gaussian model fails to represent the major depression in the surface adequately. It is 
presumed that this is due to the effect of a larger Range value. Further analysis indicates that 
the major subsidence is some 0.25m above the Base surface. This can be improved by 
reducing the Range used in the Kriging predictions. However, this contradicts the notion of 
relatedness implied by a semivariogram, in that the Range is determined endogenously from 
the data, and therefore, has some relevance to the process being studied, rather than imposing 
some arbitrary Range on the model. Lastly the Gaussian model predicts a larger average 
estimation error than does the Rational Quadratic. This is evident in the Sill obtained from the 
semivariograms (0.032 for the Rational Quadratic and 0.044 for the Gaussian).  
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Table 4: Difference between Model G (Gaussian) and Base Model at 95% CI (25m cells) 
 

Model Cells Outside 
95% CI 

Cells Inside 
95% CI 

Total 
Cells 

Percent 
Outside 

CI 

Maximum 
Difference 

C 7,458 197,559 205,017 3.6% 0.250 
 
Table 4 indicates that the Gaussian Model has predicted the surface reasonably well; however 
this can be largely attributed to the average error envelope being 0.04m wider for the 
Gaussian Model than for the Rational Quadratic model. Figure 6 describes the differences 
between the Base model and Model C (Gaussian). 

 
Figure 6: Base - Model C (Gaussian) at 95% CI 
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4.  CONCLUSIONS 
 
It is evident from this work that it is difficult to predict a surface when it is not possible to 
obtain measurements at significant points. However, the modeling technique provides an 
unbiased approach for the selection of an appropriate model, and by including measurement 
error we have the ability to determine the sensitivity of the prediction given a particular 
network design. One interesting observation, from the introduction of reliable variances into 
the chosen network model, was that the level of these variances did not alter the prediction 
surface significantly due to the large distances between monuments having greater effect than 
the measurement variance. The statistical interpretation of this observation is that a high-
precision measurement method is therefore not required for deformation monitoring in this 
case. The corollary to this, from a geodetic viewpoint, is that the DGPS method will not 
discover deformation using this approach for, perhaps, three years. Increasing the number of 
monuments would help this problem. However, the chosen model incorporated over 50 
monuments, which is already a substantial number. The real problem remains that data may 
not be collected in the most appropriate areas for surface modelling. 
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