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Abstract

When a specific area has to be monitored, several techniques are available. One of them is to survey
a geodetic network at different epochs. Each survey provides the positions of the points at a given
time. The first results are obviously the displacements, from which, in a second step, one can
process the deformation field. Deformation tensors are a very efficient instrument to perform this
calculation and can be very helpful to analyse the behaviour of the studied area. Indeed, three
independent measures - dilatation, shear and twist - can be derived. These three parameters describe
the way and the magnitude of the deformation.
Besides, these deformation parameters should be characterized by an indicator of precision since the
uncertainties in the observations and measurements propagate through out the computation and then
lead to uncertainties in the results. This reliability mainly depends on measurements standard-
deviations and network geometry. However, the calculation itself of these deformation parameters
contributes also to the error propagation. Therefore, two methods have been considered.
The first method is used when the calculation of the deformation parameters can be linearized.
Variances-covariances matrix propagation rules can be applied so that standard-deviations on the
deformation parameters are processed following all mathematical rules and can be determined in a
formal way.
If the calculation can not be linearized, a second method has been studied. Thus, a new property is
introduced to characterize the network: its deformability. This is calculated by the way of virtual
deformations created by an artificial change of the observations using Monte Carlo method. This
deformability is actually the slightest deformation the network is able to detect and thus, one can
check if the observation of the a priori designed network can reveal the expected deformation.
Finally, the deformation reliability at a point is defined by the comparison between the network
deformability at this point and the real deformation that has been measured.
This work deals with a 2D problematic. Several studies conducted at the Department of Geodesy
and Levelling of the Institut Géographique National - France, have been used as practical trials and
will be presented.

1. Introduction

When a structure is monitored by the way of topometric or geodetic networks, the points
displacements are determined with respect to reference points that are supposed to be located
outside the area of interest. However what is of importance for the structure is the internal
deformation that the structure has to face with. That’s why it has been found interesting to analyze
the displacements one can get with a surveying monitoring network in terms of deformations. And
the defomation tensors are an efficient tool for such an analysis. But, as in any interpretation of data
processed from observations that are affected with uncertainties, it becomes compulsory to have an
idea of the confidence level we can have on these computed tensors. That’s what the study
presented in this article deals with.
First, deformation tensors are briefly presented. Then, the notions of deformability of a monitoring
network and deformation significance are defined, before presenting a way of computing them and
some practical examples. Finally, perspectives are exposed since this study is still being developed.

Proceedings, 11th FIG Symposium on Deformation Measurements, Santorini, Greece, 2003.



2. Deformation tensors

It is convenient to present briefly the notion of deformation tensors and the hypotheses in which this
study is leading.

2.1 Definition of deformation tensors

Deformation tensors gather most of the information of the behaviour of a displacement vectorial
field. Given a local displacement field around a given point M(x,y),
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the deformation tensor E(x,y) is given by the gradient of this displacement field at this point:
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By calculating the gradient of the displacement field, one gets rid of the reference that has been used
for the calculation of the displacement field since only relative variations are considered. However,
the interpretaion of such a tensor is not obvious but its decomposition may help extracting some
characteristic elements.

2.2 Decomposition of deformation tensors

Several decompositions of deformation tensors do exist. In this study, the one that is used is the
decomposition in symmetrical and antisymmetrical parts. This decomposition leads to
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S represents the symetric tensor of deformation, also called Cauchy’s tensor. A is the antisymetric
deformation tensor.
This decomposition is used since it is assumed that the hypothesis of small deformations is checked.
Indeed, the gradient processing is acting as a filter in order to consider the internal evolution of the
studied area. A global translation of the whole area is cancelled out. However a global rotation lets
appear quadratic terms in the deformation tensor. The hypothesis of small deformation implies that
this quantity is negligeable and leads to the preceding linearization and the following interpretation.

2.3 Deformation primitives

Deformation primitives are quantities defined by the deformation tensor. They represent the
deformation in a more meaningful way. These parameters are usual in material characteristics and
mechanics.
From the symetric tensor S, one can qualify the principal constraints. S is diagonalisable since it’s a
real symetric matrix. It’s usually represented by an ellipse with the following parameters:
� the eigenvectors of S determine the direction of principal axes,



� the eigenvalues of S determine the length of the semi-axes.
The principal constraints are the eigenvalues. A negative constraint is a contraction while a positive
one is an expansion. Dilatation (simple or total) and shift (pure, simple or total) are defined from S.

The antisymetric tensor A can be understood as a rotation ωz. This rotation is composed by a rigid
rotation Ω which affects the whole area and a differential rotation or twist δωz.

Depending on the use and the goal of the monitoring network, there can be chosen three
independent primitives in order to characterize the deformation of the area: one for the dilatation,
one for the shift, and one for the twist. Furthermore, dealing with the significance of deformation
implies that it is possible to evaluate the deformation. Therefore, a norm of deformation tensor
should be defined. The idea is then to process the reliability for each deformation primitive instead
of defining the reliability of a deformation tensor.

3. Deformability of a network and deformations significance

3.1 Definition

A geodetic network has to be understood as a structure where points and stations are linked to each
other by the observations. Random errors caused by instruments, centering, environment affect
these observations. These random errors are quantified and define the standard deviation associated
to each observation what is used to weight the observation during the Least Squares adjustment of
the network. Therefore, the coordinates of the points are determined with a processed precision.

In order to have an information about the deformation such a network is able to detect, the first idea
is to make the observations vary in their confidence interval, then to compute the new point
coordinates and the displacement. Finally it results the deformation quantified by the three
deformation primitves for each of those artifical displacements.  It then becomes possible to
determine how the network answer to any observation changes with respect to its standard
deviation. That’s what one can call the deformability of the network. Consequently, any
deformation whose magnitude is less than the deformability of the network, can not be considered
as significant.

In this study, the deformation primitives that have been chosen are positive scalars, growing with
the deformation amplitude :
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3.2 Computation of Deformability

Several sets of artificial observations are created by using the Monte Carlo method whose
parameters are the standard deviations of the observations. Then coordinates are adjusted by Least
Squares. In the following one obtains the virtual displacements as differences between the original
set of coordinates and the artifical one. From this virtual displacement, virtual deformation tensors
are processed and finally virtual deformation primitives.



Given a number sim of simulations, the mean and the standard deviation of all the virtual
deformation primitives, these artificial observations lead to the following definition of
deformability:
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This definition lets 99% of virtual deformation to be taken into account assuming that the set is
following a normal distribution.

This deformability can be useful when designing the network. Indeed, simulations can be done with
theoretical measurements token as the original observations and by applying a Monte Carlo noise to
get the artificial observations and finally the virtual deformation.

3.3 Deformation significance

Deformation significance has to point out the level of confidence of the deformation primitive
values. This confidence level depends on :
� The way deformation tensors are computed
� Uncertainties in the observations
� The Geometry of the network
� The compensation by least squares of the network at a given time
� The deformation primitives

Using the same notation, one can define the degree of significance by the following formulae:
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This degree of significance is negative when the measured deformation is not significant since it has
a smaller magnitude than the deformability. If it is positive, the measured deformation is
meaningful.



4. Processing

4.1 Network compensation

The network is compensated by Least Squares method using a software developed by Y. Egels at
IGN. Monte Carlo method has been implemented and all the simulations have been realized with
this program. Each set of point displacements between the original position and the artificial one is
organized in an output file.

4.2 Deformability

Displacement fields are processed from a set of displacement set by an interpolation on a grid
following a bicubic expression in order to assure the continuity and the homogeneity of elastic
medium. Once the displacement field computed, the deformation tensors are processed on each
element of the grid, then the deformation primitives. Means and standard deviations are then
computed in order to get the deformability.
All these computations have been realized with Matlab.

4.3 Example

A geodetic network observed at two different epochs in the same way is presented here as an
example. First, the deformability is shown for the primitives of dilatation (Fig. 1) and shift (Fig. 2).
The deformability is growing from blue to red : smaller deformations can be detected in the blue
area , bigger in the red one. Then the figures Fig. 3 and Fig. 4 show the reliability on the effective
deformations that have been measured. Only a deformation in dilatation  between two points in the
North East of the studied region is significant.

(m/m)

Fig. 1 : Deformability in dilation Fig. 2 : Deformability in shift



(m/m)

Fig. 3 : Reliability in dilation Fig. 4 : Reliability in shift

5. Perspectives

5.1 Displacement field

Another way of processing the displacement field is actually being studied by finding the minimal
deformation energy using conjugate gradients whereas the displacement on the network points are
held fixed to the processed value.
If the characteristics of material resistance (modulus of elasticity for instance) are known, it could be
possible to find the eventual structure breaks or terrain fault where the measured deformation is
significant and too large to be accepted by the elastic material. Furthermore, the displacement field
could be processed considering heterogeneous mediums of elastic materials. This processing could
even be applied using Finite Element Method by giving particular properties to each element of the
interpolation grid.

5.2 Linearization

Monte Carlo method could be replaced by using variances-covariances  matrices and their propagation
rules through out linear or linearizable processing.

5.3 Extension to 3D

This study has been made on 2D objects only. Naturally, the extension to 3D objects has to be one of
the final goals. Indeed, as least squares compensation of geodetic networks can deal with 3D data, it
becomes evident to deal with 3D deformations. However, interpretation of 3D tensors is far more
complex and the number of deformation primitives is bigger.

5.4 Geotechnical measurement integrations

The main goal of this study is to conclude from displacements measured by geodetic monitoring
networks to deformations. Furthermore geotechnical instruments measure directly deformations and
such measurements should be integrated in the study of network deformability.



6. Conclusion

This article presents some of the notions that the interpretation of geodetic monitoring networks into
deformations has been requiring. Deformability and reliability of deformations had to be defined. As
part of these definitions, processing has been set up and applied to real networks to check their
validity. However, there are still points to study thoroughly in order to be more efficient and more
rigorous.
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