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Abstract

In order to extract displacements and crustal deformation parameters various geodetic methods

and algorithmic techniques are presented and rigorously applied. Geodetic measurements

carried out from 1979 until 2003 at the network of Volvi area in northern Greece are

systematically analyzed. The corresponding analysis and computational process can be

described by a combination of the following three steps :

a. Comparison of the results as obtained by independent net adjustments between any two

epochs of observations. Therefore the connection of the time spanned network configurations is

achieved.

b. Application of prediction techniques on the former results, such as least square collocation,

and estimation of deformation parameters for the network area.

c. Simultaneous adjustment of all epochs, including extended adjustment models, e.g. the

velocity model.

In each step a statistical assessment must be performed in order to test the significance of the

estimated displacements. Finally, the interpretation of the results at the interesting area of the

Volvi Lake is attempted.

1. Introduction

The estimation of displacements and deformation parameters of the land is very important in

Greece due to its great seismic activity. The Volvi area is located at the northern part of Greece

(Central Macedonia) and about 40 km from the city of Thessaloniki. The wide area 40 km × 25

km which includes two lakes (Lagada and Volvi) is one of the geodynamically interesting areas

(Papazachos et al., 1979). The largest shocks occurred on May 23, 1978 (Ms=5.8), June 19,

1978 (Ms=5.2) and June 20, 1978 (Ms= 6.5) followed by a series of aftershocks with

magnitudes up to 5.0 affecting seriously the city of Thessaloniki.

In order to contribute to the respective geodynamical studies and investigations a monitoring

geodetic network with sixteen pillars was established soon after the great shocks and measured

since then eventually. Classical measurements of angles and distances are available for the

epochs 1979, 1981, 1982, 1983, 1989 and 1990 while GPS measurements performed in 1995,

1997 and 2003. This data was analyzed and used in the present study.
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For the determination of displacements and deformation parameters in time and space various

geodetic methods have been proposed and recognized as useful techniques in many geophysical

studies (Chrzanowski, et al. 1983, Papo and Perelmuter 1983, Rossikopoulos 2001,

Rossikopoulos and Fotiou 2001). In the present work some methods and algorithmic techniques

are rigorously applied. The analysis includes three main steps followed by proper statistical

evaluation.

2.  Comparison between two epochs

It is well known that the elimination of the difference between coordinates in two distinct

epochs ta and tb, due to their different datum definition, is obtained by the optimal fitting of tb to

the ta coordinates of the reference epoch, applying the similarity transformation. In our case an

equivalent technique was applied using the same approximate coordinates for each separate

epoch adjustment and introducing partial inner constrains for the common points in all

observing epochs (from 1979 to 1997). A future goal is to combine the latest GPS data (2003)

with the previous classic observations.

Fig. 1 The vectors of coordinate differences from 1979 until 1997 in the Volvi  network

In Fig. 1 the vectors of coordinate differences are mapped from epoch to epoch for all points of

Volvi network where the three main fault lines are also shown. It is obvious that almost all

points tend to follow a random circular motion. In order to test the significance of the coordinate

differences, i.e. to detect possible displacements, hypothesis testing has been applied for all

pairs of consecutive epochs by means of the corresponding confidence ellipses.



Fig. 2 The vector of coordinate differences and their confidence error ellipses (1− a = 0.95) between 1995 and 1997.

Fig. 2, is a representative one between the epochs 1995 and 1997, where in some points the

existence of possible displacements is obvious. Possible displacements are evident in almost all

pairs of epochs but in different points and directions of the Volvi network complicating the

interpretation of the results.

3. Exact collocation method for the prediction of crustal deformation parameters

Let u and v the vectors of coordinate differences in x and y directions between two epochs.

The prediction of deformation parameters in any point at the network area may be described as

follows:

The process starts with the computation of vectors ξ and η by,

ξ = K−1 u  ,     η = K−1 v                                                                                                              (1)

where K is the covariance matrix of the displacements, with elements Kij = K(Sij), usually

expressed by the exponential function
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where R a mean distance between points. In the case of exact collocation, as in our case, ko = 1.

In any point P(x, y) the following partial derivatives are computed:
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where xi, yi are the coordinates of the network points. The dilatation Τ, the maximum shear

strain γ and the rotation ω (the deformation parameters) are given by

γ1

21 γ+γ=γ

(5)

An application of this method is presented more extensively in Dermanis et al. (1981). The
above algorithm has been applied in all consecutive pairs of epochs (79−80, 80−81, 81−82,

82−83, 83−89, 89−90, 90−95, 95−97). In all pairs of epochs a similar systematic pattern, as in

Fig. 3 for the case of γ – maximum shear strain, exists. The same is true for the case of Τ –

dilatation. This situation enforce the previous conclusion that there are certain systematic

displacements in the area.
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Fig 3. The maximum shear strain γ (γ×10−6) between epochs 1995 –1997 of Volvi network using the collocation

method with mean distance R=4 km.



4.  Simultaneous adjustment of all epochs and velocity field estimation

Under the hypothesis of a smooth motion in the deformation area, the vector of the

displacements is a function of the velocity displacement and the acceleration according to the

model:

xα = xo  +  δ 2
at ...      where     + δta. x

.
x
..
. δtα=  tα – to  .   (6)1

2
Applications of this model are given by Papo and Perelmuter (1983) and Rossikopoulos et al.

(1998).

Considering a homogeneous displacement field in time, only the linear part of the above

equation is used. Therefore, the system of observation equations for the m epochs is formulated

by:

b
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where xo is the vector of coordinate corrections for the reference epoch, b
1x … b

mx are the vectors

of the transformed coordinates of the epochs t1, … tm and Wα = −

a

C  or  α  in case

the reference epoch to is also an epoch of observations. For the choice of the generalized inverse
of the non−positive covariance matrix Cα , see Bjerhammar (1973) or Uotila (1974).

Figure 4 shows the point velocity vectors of Volvi Network as derived from the

simultaneous adjustment of epochs 1979, 1981, 1982, 1983, 1989, 1990, 1995 and 1997 with

their confidence ellipses. In this figure we notice that the velocities for all points are marginally

insignificant.

In the present study the velocity vectors with their associated confidence ellipses were also

computed for the three GPS observing epochs (1995, 1997 and 2003) in order to get a first

impression using the recently obtained GPS data. The corresponding numerical results are

presented in Tables 3 and 4. For these epochs the same conclusion as above can be derived for

the velocity vectors.

Table  3. A−posteriori adjustment parameters for 1995, 1997 and 2003 epochs (GPS Network).

Variance Components Global
1995 1997 2003

Sum of  Weighted Squares (φ̂ i ) 0.2482 0.3585 0.0665 0.6732

Degrees of Freedom (fi) 8.39 11.38 1.64 21
Number of Observations (ni) 21 21 21

Variance (σ̂ 2
i )

0.0296 0.0315 0.0405 0.0321

St. Deviation (σ̂i ) 0.17 0.18 0.20 0.18

Wα= (Cο + C )−



Table  4. Velocities of the coordinates and error ellipses for the Volvi network in epochs 1995, 1997 and 2003  (GPS

Network ).

Velocities Error Ellipses

i (cm/year) (x, y) plane (x, z) plane (y, z) plane

u
.̂

 v
.̂

 w
.̂

 a
(cm)

b
(cm)

ϑ
 (grad)

a
(cm)

b
(cm)

ϑ
(grad)

a
(cm)

b
(cm)

ϑ
(grad)

7 0.12 0.17 0.22 0.14 0.06 71.16 0.15 0.08 59.30 0.12 0.07 31.26
3 0.03 −0.02 0.00 0.10 0.05 72.96 0.11 0.06 55.96 0.08 0.05 25.88
5 −0.53 −0.12 −0.43 0.10 0.05 71.11 0.11 0.06 61.37 0.08 0.05 34.40
13 −0.07 0.03 −0.09 0.11 0.05 71.61 0.12 0.06 56.44 0.09 0.05 27.86
16 −0.53 −0.27 −0.52 0.11 0.05 75.83 0.12 0.06 61.27 0.09 0.05 27.96
10 0.35 0.07 0.32 0.12 0.06 67.54 0.13 0.07 55.81 0.11 0.06 34.97
9 0.60. 0.16 0.49 0.15 0.07 76.35 0.16 0.08 59.37 0.13 0.07 29.50

Fig 4. Velocity vectors and their confidence error ellipses (1−a=0.95) , for  the Volvi Network as results from the

measurements in the years 1979, 1981, 1982, 1983, 1989, 1990 (classical network) and 1995, 1997 (GPS
Network).

5. Concluding remarks

The presented study is rigorously developed using certain geodetic methods and algorithmic

techniques in order to detect crustal deformations. The process has been extensively applied in

the geodynamically interesting  area of Volvi Lake, near the city of Thessaloniki, where more

than twenty years classical and GPS data are available.

The analysis shown that there is a marginal derformation in the area, a remark that is mainly

enforced by the results of the deformation study by the exact collocation method.

Last years the results reflect a slight relaxation of the deforming body in terms of local

geodynamic activity.
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